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MATHEMATICAL MODEL FOR THE
INCUBATION OF THE PLASMODIUM

VIVAX MALARIA

P. Pongsumpun+∗ and P. Mumtong+,

ABSTRACT

Malaria disease is caused by the multiplication of
protozoa parasite of the genus Plasmodium. Malaria
in human is dued to four types; Plasmodium fal-
ciparum, Plasmodium vivax, Plasmodium malar-
iae, and Plasmodium ovale. Most Malaria cases in
Thailand are dued to plasmodium falciparum and
Plasmodium vivax. This disease occurs in Africa,
South America, and Asia. In Thailand, Malaria is
found along the border with Burma, Combodia, and
Malaysia. In this study, the transmission of Plas-
modium vivax malaria and the effects of incubation
for Plasmodium vivax are considered by using mathe-
matical model. The population is separated into hu-
man and mosquito populations. The application of
the standard dynamical modeling method is used for
analyzing the behaviors of solutions. The conditions
of the parameters for the disease free and endemic
states are obtained. Numerical solutions are shown
to support the theoretical predictions. The results of
this study point to the way for decreasing the out-
break of the disease.

Keywords: Plasmodium vivax ,disease free state ,
disease endemic state ,dynamical equation ,Malaria

1. INTRODUCTION

Malaria is a major public health problem in Thai-
land. This disease is found along the border of Thai-
land. Malaria disease is caused by the multiplication
of protozoa parasite of the genus Plasmodium; Plas-
modium falciparum , Plasmodium vivax, Plasmod-
ium malariae, and Plasmodium ovale. Most Malaria
cases in Thailand are dued to plasmodium falci-
parum and Plasmodium vivax [1,2]. The Anophe-
les mosquitoes are major vectors of Malaria. The
symptoms of this disease depend on the type of infec-
tion [3]. The characteristics of the patients who is in-
fected with Plasmodium falciparum in the first phase
of the disease are fever, under the pains and aches,
nausea, vomiting and abdominal pain. Some people
may cough or cold in the first 4-5 days of high fever.
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Symptoms of patients who is infected with Plasmod-
ium ovale are similar to Plasmodium vivax but the
symptoms are less [4]. This disease occurs in Africa,
South America, and Asia [5]. In Thailand, Malaria is
found along the border with Burma, Combodia, and
Malaysia. The most Malaria patients are found in
Songkhla, Yala, Mae Hong Son, Tak, Kanchanaburi,
Prachuap Khiri Khan, Chumphon, Ranong, Chan-
thaburi and Narathiwat. The symptoms of Malaria
patients appear after the Plasmodium incubates in
the body. The period of incubation of Plasmodium
depends on its type, about 10-14 days. The period of
incubation for Plasmodium vivax is higher than Plas-
modium falciparum. In 2001, number of patients who
is infected with Malaria are 67,749 people. There are
36,044 and 31,358 cases who is infected with Plas-
modium vivax and Plasmodium falciparum, respec-
tively. The data of Malaria cases is collected from the
Ministry of public Health from 1965 to 2007 [6,7,8] .
Pongsumpun and Tang [10] has proposed mathemat-
ical model for the transmission of Plasmodium Vivax
between human and mosquito populations. The hu-
man population is divided into four classes, suscep-
tible, infected, dormant and recovered human popu-
lations. The vector population is divided into two
classes, susceptible and infected mosquitoes. But
they did not consider the incubation of Plasmodium.
In this paper, the transmission of Malaria with the
incubation of Plasmodium Vivax is studied. The for-
mulation of model is presented in section II. The ana-
lytical and numerical results are presented in section
III. Finally, the conclusion of our model is presented
in section IV.

2. MATHEMATICAL MODEL

We propose a new model to study the transmission
of Plasmodium Vivax. We consider the transmission
of the disease between human and mosquitoes. The
diagram of the Plasmodium Vivax transmission is
presented in figure 1. Each population size is assumed
to be constant. The human population is divided
into five classes, susceptible, infected, infectious, dor-
mant and recovered human populations. The vector
population is divided into three classes, susceptible,
infected and infectious mosquitoes. The dynamical
equations of human and mosquito populations can
be explained as follows:
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(a) For the human population

(b) For the vector population

Fig.1: Flow chart of the model.

d

dt
Sh =λNT + r3Dh + r1Eh + r6Ih + r4Rh−(

µh + γ
/
hIv

)
Sh − αr1Ih

(1)

d

dt
Eh = γ

/
hIvSh − (r1 + ρh + µh)Eh (2)

d

dt
Ih = ρhEh + r2Dh − (µh + r5 + r6)Ih (3)

d

dt
Dh = αr1Ih − (r2 + µh + r3)Dh (4)

d

dt
Rh = r5Ih − (µh + r4)Rh (5)

where Sh, Eh, Ih, Dh and Rh are the number of sus-
ceptible, infected, infectious, dormant and recovered
human populations, respectively. The parameters in
the above equations are given by
µhis the death rate of human population,
γ/

h
is the transmission rate of Plasmodium vivax is

transmitted from the mosquito to the human,
γ/

v
is the transmission rate of Plasmodium vivax

from the human to the mosquito,
λNT is the birth rate of human population,
NTα is the total number of human population,
αr1 is the percentage of infected human in whom

some hypnozoites remain dormant in the liver,
r1 is the rate at which a person who infected with

Plasmodium vivax leaves the infected class,

r2 is the rate at which the dormant human relapses
back to the infectious human dued to Plasmodium
vivax,
r3 is the recovery rate of the dormant human dued

to Plasmodium vivax,
r4 is the rate at which the recovered human dued

to Plasmodium vivax relapses back to the susceptible
human,
r5 is the rate at which the infectious human dued

to Plasmodium vivax recovers,
r6 is the rate at which a person who be infected

with Plasmodium vivax leaves the infectious class,
ρh is the rate at which the infected human becomes

to be infectious human,
ρv is the rate at which the infected vector becomes

to be infectious vector,
µv is the death rate of the vector,
A is the constant recruitment rate of the vector
The dynamical equations of the vector population

are described by

d

dt
Sv = A− (µv + r/vIh)Sv (6)

d

dt
Ev = r/vIhSv − (µv + ρv)Ev (7)

d

dt
Iv = ρvEv − µvIv (8)

where Sv Ev and Iv are the number of susceptible,
infected and infectious vector, respectively. NT =
Sh + Eh + Ih + Dh + Rh is the total number of
human population, Nv = Sv + Ev + Iv is the to-
tal number of the vector population. We assume
that the total populations of human and vector are
constant. Therefore dNT

dt = 0 and dNv

dt = 0 .Since
NT = Sh + Eh + Ih + Dh + Rh ,therefore the new
equation becomes:

d

dt
NT =

d

dt
Sh +

d

dt
Eh +

d

dt
Ih +

d

dt
Dh +

d

dt
Rh (9)

The rate of change in each class is equal to zero.
Setting the right hand side of (9) to zero, we obtain
λ = µh (birth rate equals to the death rate). From
Nv = Sv + Ev + Iv , the new equation is as follows.

d

dt
Nv =

d

dt
Sv +

d

dt
Ev +

d

dt
Iv (10)

The rate of change in each class is equal to zero.
Setting the right hand side of (2) to zero, we obtain
µv = A/Nv (Mortality rate equal to the ratio between
the constant recruitment rate and the total number
of vector). This gives Nv = A/µv . We introduce the
normalized populations S/h = Sh/NT , I/h = Ih/NT ,
E
/
h = Eh/NT , R/h = Rh/NT , D/

h = Dh/NT , S/v =
Sv/Nv, I

/
v = Iv/Nv and E

/
v = Ev/Nv. then (1)-(8)

can be rewritten as
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d

dt
S
/
h = µh + r3D

/
h + r1E

/
h + r6I

/
h + r4R

/
h−(

µh + γ
/
hI
/
vNv

)
S
/
h − αr1I

/
h

(11)

d

dt
E
/
h = γ

/
hI
/
vNvS

/
h − (r1 + ρh + µh)E/h (12)

d

dt
I
/
h = ρhE

/
h + r2D

/
h − (µh + r5 + r6) I/h (13)

d

dt
D
/
h = αr1I

/
h − (r2 + µh + r3)D/

h (14)

d

dt
I/v = ρvE

/
v − µvI

/
v (15)

d

dt
E/v = γ/vNT I

/
hS

/
v − (µv + ρv)E/v (16)

The dynamic equations for R
/
h and S

/
v are not

needed,S/h + I
/
h + R

/
h + E

/
h + D

/
h = 1 since and

S
/
v + I

/
v + E

/
v = 1.

2.1 ANALYSIS OF THE MATHEMATICAL
MODEL

2.2 Equilibrium Points

The equilibrium points are obtained by setting
the right hand side of (11)-(16) equal to zero.
We get two equilibrium points, the disease free
state E1 (0, 1, 0, 0, 0, 0) and the endemic disease state
E2 (I∗h, S

∗
h, E

∗
h, D

∗
h, I

∗
v , E

∗
v ) where

(17)

(18)

(19)

D∗
h =

αr1I
∗
h

µh23
(20)

I∗v =
γ
/
vNT I

∗
hρv(

µv + γ
/
vNT I∗h

)
(µv + ρv)

(21)

E∗
v =

[
γ
/
vNT I

∗
hµv

µv (µv + ρv) + γ
/
vNT I∗h (µv + ρv)

]
(22)

where µρh1 = r1 + ρh + µh, µh23 = r2 + µh +
r3, µρv = µv + ρv, α14 = r6 − r4 − αr1, r34 = r3 − r4
and I∗h are the solution of

A1 (I∗h)2 +A2I
∗
h = 0 (23)

The solutions of (23) are given by

I∗h = 0 (24)

I∗h = A2/A1 (25)

where

and

I∗h is positive for R0 > 1, where

R0 = µh23ρhγ
/
vNT ρvγ

/
hNv

µv(µhµh23+r5µh23+r6µh23−r2αr1)µρh1µρv

2.2.1 Local Asymptotical Stability

The local stability of an equilibrium point is deter-
mined from the signs of eigenvalues of the Jacobian
matrix of the right hand side of the above set of dif-
ferential equations [9].

2.3 Disease Free State

For the equations (11)-(16), the Jacobian matrix
evaluated at E1 is given by

The eigenvalues are obtained by solving the char-
acteristic equation; det (J − λI6) = 0 where I6 is the
identity matrix dimension 6× 6. If all eigenvalues for
each equilibrium state have negative real parts , then
that equilibrium state is locally stable. The charac-
teristic equation for the disease free state is given by

(26)
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From the characteristic equation (26), eigenvalues
are given by λ1 = − µh − r5 − r6, λ2 = −µh − r4,
λ3 = −r1 − ρh − µh, λ4 = − r2 − µh − r3, λ5 = −µv
and λ6 = − µv − ρv

We found that the disease free state is locally sta-
ble state when R0 < 1.

2.4 Endemic Disease State

The local stability of the endemic state, E2 , is de-
termined by looking at the signs of the eigenvalues of
the Jacobian evaluated at E2 . The Jacobian matrix
for this state is

where are defined in and I∗h, S
∗
h, E

∗
h, D

∗
h, I

∗
v and E∗

v

are defined in (17)-(22) and R0 > 1. The character-
istic equation for the endemic state is given by

λ6 +T6λ
5 +T5λ

4 +T4λ
3 +T3λ

2 +T2λ+T1 = 0 (27)

where

T1 =µhv5µρh1µh23µvµρv + r2v (r1 − r4)
T2 =µhv5µh23ρµvµρv + µ2hv5µρh1µh23µvµρv

+ µhv5µρh1µh23µρvv

T3 =µhv5µvµρv + µ2hv5µh23ρµvµρv+
µρh1µh23µvµρv + µhv5µh23ρµρvv+
µ2hv5µρh1µh23µρvv + µhv5µρh1µh23,

T4 = µ2hv5µvµρv + µh23ρµvµρv+
µhv5µρvv + µ2hv5µh23ρµρvv+
µhv5µh23ρ,

T5 = µvµρv + µ2hv5µρvv + µh23ρµρvv+
µhv5 + µ2hv5µh23ρ + µρh1µh23,

T6 = µρh1µh23µρvv + µρvv + µ2hv5 + µh23ρ

with µhv5 = (µh + r5 + r6)
(
µh + γ

/
hI

∗
vNv + r4

)
,

µh23ρ = µh23 + µρh1, µ2hv5 = 2µh + r5 + r6 +
r4 + γ

/
hI

∗
vNv, r2v = γ

/
vNT I

∗
hρvαr1r2γ

/
hI

∗
vNv, µρvv =

µρv +µv +γ
/
vNT I

∗
h, µρv = µρv +γ

/
vNT I

∗
h. The eigen-

values are found by solving λ6 +T6λ
5 +T5λ

4 +T4λ
3 +

T3λ
2 + T2λ+ T1 = 0. The signs of these eigenvalues

are negatives when they satisfy the Routh-Hurwitz
criteria[10];

T6 > 0 (28)

T6T5 − T4 > 0 (29)

T6T5T4 + T6T2 − T3T
2
6 − T 2

4 > 0 (30)

T3(T6T5T4 − T 2
4 − T 2

6 T3) + T6T1(T6T5 − T4)−
T2(T6T

2
5 − T5T4 − 2T6T3 + T2) > 0

(31)

T2(T3(T6T5T4 − T 2
4 − T 2

6 T3)−
T2(T6T

2
5 − T5T4 − 2T6T3 + T2))+

T1(T6T4(T6T3 − 3T2) + T 2
4 +

T6(2T6T5T2 − T5T
2
4 − T 2

6 T1)) > 0

(32)

T1

(
T2(T3(T6T5T4 − T 2

4 − T 2
6 T3)−

T2(T6T
2
5 − T5T4 − 2T6T3 + T2))

)
+T1(T6T4(T6T3 − 3T2) + T 2

4 +

T6(2T6T5T2 − T5T
2
4 − T 2

6 T1)) > 0

(33)

The inequalities (29)-(33), are shown in the follow-
ing figures.

Fig.2: The parameter spaces for the endemic
equilibrium point which satisfy the Routh-Hurwitz
criteria. The values of the other parameters are
µh = 0.0000391day−1, µv = 0.14285day−1, r1 =
0.0714285day−1, r2 = 0.1day−1, r3 = 0.05day−1, r4 =
0.0714285day−1, r5 = 0.05day−1, r6 = 0.1day−1.

The inequality (28) satisfy Routh-Hurwitz criteria
because all terms in T6 have positive value. From the
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above figures; Routh-Hurwitz criteria (29) to (33) are
satisfied for R0 > 1 . Thus, the endemic equilibrium
state is locally stable for R0 > 1.

2.5 Numerical Results

In this section, we analyze the model given by
equation (11)-(16). The trajectories of the solutions
when the parameter values will lead to a disease free
equilibrium state and when they will lead to the en-
demic equilibrium state are shown in the following
figures.

Fig.3: Numerical solutions demonstrate the
solution trajectories, projected into the 3D-
space (Sh, Ih, Dh), (Sh, Ih, Eh), (Sh, Dh, Eh),
respectively. The value of parameters are
µh = 0.0000391day−1, r1 = 0.0714285day−1, r2 =
0.0005479day−1, r3 = 0.0333333day−1, r4 =
0.0001826day−1, r5 = 0.3333333day−1, r6 =
0.1day−1, α = 0.75, γ/

h
= 0.22, γ/

v
= 0.0016. (a)

R0 < 1, R0 = 0.342116. The fractions of populations
I∗h, S

∗
h, E

∗
h, D

∗
h, I

∗
v , E

∗
v ) approach to the disease free

state (0, 1, 0, 0, 0, 0). (b) R0 < 1, R0 = 37.6073.
The trajectory of the six state variable solu-
tion (I∗h, S

∗
h, E

∗
h, D

∗
h, I

∗
v , E

∗
v ) spirals into the en-

demic disease equilibrium state (0.00064586,
0.0266009, 0.000872935, 0.00102003, 0.0000583927,
0.0003238973).

We compare the behavior of our solutions for the
different basic reproductive numbers. The results are
show in figure 4.

a)

(b)

Fig.4: a) Behavior of our model for
R0 = 997.326, Nv = 1, 400. b) Behavior of
our model for R0 = 97.326, Nv = 700. The
other Similar parameters for fig 4a) and 4b) are
µh = 0.0000391, µv = 0.35, r1 = 0.0714285, r2 =
0.0005479, r30.0333333, r4 = 0.0001826, r5 =
0.3333333, r6 = 0.1, α = 0.75, γ/

h
= 0.22, γ/

v
=

0.0.0016.
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3. DISCUSSION AND CONCLUSION

In this study, we analyzed the model of Malaria
with the incubation of the Plasmodium Vivax . The
basic reproduction number is defined by R0 where

R0 =
µh23ρhγ

/
vNT ρvγ

/
hNv

µv (µhµh23 + r5µh23 + r6µh23 − r2αr1)µρh1µρv
(34)

Fig. 3 shows the solution move towards its equilib-
rium state. We can see that the trajectory approaches
to the disease free equilibrium state (0,1,0,0,0,0) for
R0 > 1. When R0 > 1, we can see that the trajec-
tory is spiraling into the endemic equilibrium state
(0.00064586, 0.0266009, 0.000872935, 0.000102003,
0.000583927, 0.000328973). Fig. 4 shows the solu-
tion for R0 = 97.329 moving towards its equilibrium
state faster than R0 = 13.5103.

Fig.5: Bifurcation diagrams of the solutions of
equations (11)-(16) for the different values of R0.—
-denote the stable solutions while —- denote the un-
stable solutions.

The bifurcation diagrams of (11)-(16) are shown in
Fig. 5. We can see that, when R0 < 1, E1 will be
stable and for R0 > 1, E2 will be stable. If the basic
reproductive number is greater than one, the suscep-

tible population decreases. The normalized infected,
infectious, dormant human populations infected and
infectious vector population increase. These subse-
quent behaviors occur because there is enough suscep-
tible population to be infected from infectious vector.
The ultimate goal of any control effort would be the
reduction of R0 to a value below one. If we can re-
duce the threshold number as defined in (34), then
the number of infected human population will be de-
creased. This will reduce the outbreaks of Plasmod-
ium Vivax Malaria [11,12,13,14,15, 16,17] .
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